

SEGUNDO INTERLABORATORIO DE INVESTIGACIÓN DE PLAGUICIDAS DETERMINACIÓN DE TEBUCONAZOLE POR HPLC ORGANIZADO POR CALIBA - AÑO 2011

ANÁLISIS ESTADÍSTICO DE RESULTADOS

Coordinación General:

Dr. Horacio Denari – Coordinador Área Calidad Ing. Mario Ismach – Coordinador Área Calidad

Evaluación estadística:

Msc. Ana Agulla Lic. Olga Susana Filippini

Lic. Hugo Delfino

Docentes Disciplina de Estadística Universidad Nacional de Luján

<u>Índice</u>

Metodología de Análisis	1
Información General	1
Objetivos	1
Condiciones generales:	1
Estadística aplicada a módulos con resultados numéricos	2
Generalidades	2
Glosario	2
Media y desvío estándar. Análisis Robusto	3
Z-Score	5
Detalles del procedimiento de análisis	5
Resultados	
I. Analito a investigar	7
Analito: Concentración de Tebuconazole en la muestra de un producto "Grado Técn	
empleando una técnica de HPLC en fase reversa	7

Metodología de Análisis

Información General

Objetivos

 Determinar la concentración de Tebuconazole en la muestra de un producto "Grado Técnico", empleando una técnica de HPLC en fase reversa.

Los participantes recibieron:

- 1 vial con solución estándar de Tebuconazole de concentración
 1.010 mg/ml
- 1 vial con 3 gramos de muestra incógnita de Tebuconazole "Grado Técnico" de pureza mayor a 95%.

Condiciones cromatográficas sugeridas para el análisis por HPLC:

1. Columna: C-18

2. Fase móvil: Acetonitrilo: Agua, 60:40

3. Flujo: 1 ml/min

4. Detector: UV

5. Longitud de Onda: 224 nm

6. Temperatura del horno: 40º C

7. Solvente de dilución: Metanol grado HPLC

Condiciones generales:

Se requirió que el análisis se realice por triplicado (tres pesadas independientes de muestra), informándose los resultados obtenidos y el

promedio entre los mismos, expresados en gramos cada 100.0 gramos de muestra.

Asimismo, se solicitó que los participantes informen la Incertidumbre de Medición para el valor promedio obtenido para cada parámetro y los componentes de incertidumbre que se han tomado en cuenta.

Estadística aplicada a módulos con resultados numéricos

Generalidades

Una vez procesadas las muestras en los laboratorios, los resultados fueron cargados en la base de datos y analizados estadísticamente, calculando los parámetros indicados en el glosario siguiente:

Glosario

Esquema de control de calidad externo (CCE): sigla para programa de Control de Calidad Externo.

Ensayo: cuantificación de un grupo de muestras con un determinado análisis.

La mediana: que es por definición el valor cuya posición corresponde al 50% del número total de datos ordenados.

Media aritmética: Suma de todas las observaciones, sobre número total de datos.

Desvío o Sesgo: Desviación del resultado respecto del valor asignado

Desviación del resultado: Valor absoluto del desvío (ignorando el signo).

Precisión: Cercanía entre medidas repetidas. Es una medida de reproducibilidad. La precisión, o generalmente imprecisión, se expresa continuamente como la variación del resultado realizado repetitivamente dentro de un ensayo, corrimiento, variación entre ensayos y variación entre laboratorios.

Variación entre ensayos: Es un índice de la imprecisión que demuestra la variabilidad de los resultados de un ensayo de análisis a otro. Sólo podrá calcularse en el caso de repetición de las determinaciones en un mismo laboratorio, es decir, donde existieran no menos de 5 determinaciones para el mismo ensayo para cada laboratorio.

Variación entre laboratorios: Es un índice de la imprecisión que expresa la variabilidad de resultados entre laboratorios que participan en el esquema CCE.

Parámetros estadísticos: Media, desviación estándar (DE), coeficiente de variación (CV) y mediana son los parámetros que se utilizan en la evaluación de los resultados de CCE. La media (también llamada media aritmética o promedio), DE y CV son parámetros estadísticos utilizados cuando se asume que los datos tiene una distribución normal (Gaussiana). Dicha suposición no es requerida para calcular la mediana.

Valores atípicos: Muestra los cinco valores mayores y los cinco menores, con las etiquetas de caso.

Intervalos de confianza: Los límites de confianza para detectar laboratorios que presenten valores fuera de rango. Los mismos se realizaron con un nivel de significación (1- α) igual al 99%.

La información correspondiente a cada parámetro de análisis fue tratada como una población independiente de estudio.

Media y desvío estándar. Análisis Robusto.

Este algoritmo retorna valores robustos de la media y la desviación estándar a los datos a los cuales se aplica.

NOTA 1. Robustez es una propiedad de la estimación del algoritmo, no del valor estimado que produce, entonces no es estrictamente correcto llamar a la media y desviación estándar calculados como tales a un algoritmo robusto. Sin embargo, para evitar el uso de terminología excesivamente engorrosa, el término "Media robusta" y "Desvío estándar robusto", debe

ser entendido en este Estándar Internacional como estimaciones de la media de la población o el desvío estándar de la población calculado usando un algoritmo robusto.

Sean los p ítems de los datos, ordenados de forma creciente, como:

$$X_1, X_2, X_3, ..., X_p$$

Denomínese la media robusta y el desvío estándar robusto de estos datos como x* y s*

Calcule los valores iniciales de x* y s* como:

$$x^*$$
=mediana de x_i (i=1,2, ..., p)

$$s*=1,483*$$
 mediana de $|x_i - x^*|$ (i=1,2, ..., p)

Actualizar los valores de x* y s* de la siguiente manera. Calcular:

$$\delta$$
= 1,5s*

Para cada x_i (i=1,2, ..., p), calcular:

$$x_{i} = \begin{cases} x^{*} - \delta & si \ x_{i} < x^{*} - \delta \\ x^{*} + \delta & si \ x_{i} > x^{*} + \delta \\ x_{i} & de \ lo \ contrario \end{cases}$$

Calcular los nuevos valores de x* y s*:

$$x^* = \sum \frac{x_i^*}{p}$$

$$s^* = 1{,}134\sqrt{\sum \frac{(x_i^* - x^*)^2}{(p-1)}}$$

Donde la sumatoria es sobre los i.

El estimador robusto x^* y s^* se deben derivar mediante un cálculo iterativo, actualizando los valores de x^* y s^* reiteradas veces usando los

valores modificados, hasta que el proceso converja. La convergencia debe ser asumida cuando no hay cambios de una iteración hacia la otra en el tercer valor significativo del desvío estándar y de su figura equivalente en la media robusta.

Z-Score

La puntuación z es la medida del desvío de los resultados que han sido informados por cada laboratorio, respecto al valor asignado, expresado en unidades de desviación estándar. Este parámetro es conveniente por su cálculo directo y fácil interpretación. En este caso definimos una puntuación z para cada resultado analítico como el cociente entre el desvío respecto al valor asignado $(x_i - x^*)$ dividido por la desviación estándar s^* .

Resultando: $z = (x_i - x^*) / s^*$ Dónde: $x^* = Media robusta$.

s* = Desvío estándar robusto.

Detalles del procedimiento de análisis

Se comenzó con el proceso de estimación de la medidas robustas, para lo cual se introdujeron los valores iniciales y luego de manera iterativa se iba excluyendo los outliers y se recalculaban los valores de la media y desvío estándar a fines de obtener estadísticas robustas.

Se crearon intervalos de confianza dos y tres desviaciones estándar, aplicándose el criterio de medida cuestionable si el valor se encuentra entre los 2 y 3 desvíos e Insatisfactorio si es mayor a los 3 desvíos.

Para aquellos parámetros, donde la gran mayoría de los laboratorios reportan valores que son el límite de detección de la técnica o dispositivo empleado, no se pudo realizar un análisis paramétrico de los resultados. En este caso se hizo una descripción de los resultados obtenidos.

Los análisis estadísticos se realizaron sobre el promedio de las determinaciones hechas por cada laboratorio, debido a que no todos realizaron las dos mediciones.

Se calcularon los z-scores, como medida de estandarizar los valores obtenidos por los laboratorios y representarlos gráficamente para detectar los casos que se encuentran fuera de los límites de 2 y 3 desvíos estándar robustos.

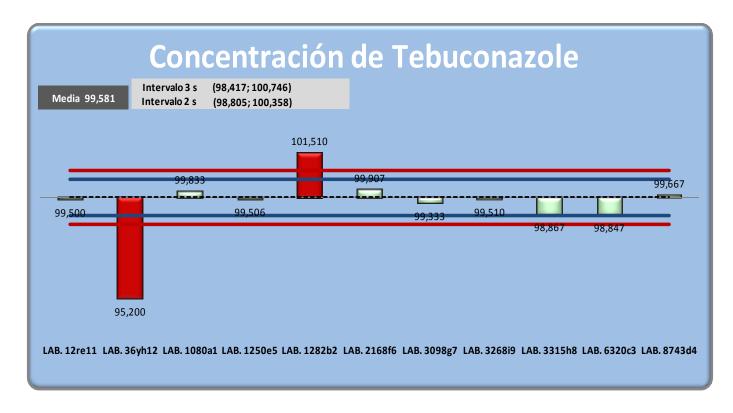
Por último, se confeccionó el gráfico de Youden (considerado a un nivel α del 5%) para los analitos que cuentan con un número de resultados acordes a la realización del mismo, como así también de la puntuación z-score para cada uno de los laboratorios para mostrar gráficamente. Solamente se consideró un nivel α del 5%.

Resultados

I. Analito a investigar

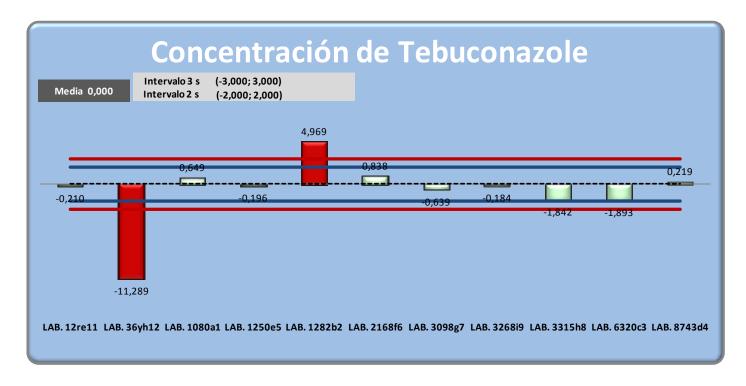
Analito: Concentración de Tebuconazole en la muestra de un producto "Grado Técnico", empleando una técnica de HPLC en fase reversa.

Participantes: 8 de 8 laboratorios.


Concentraci	on ae		Iteración									
Tebuconazole en la muestra												
de un producto "Grado												
Técnico", emple	ando una	*x-x	1	2	3	4	5	6	7	8	9	10
LAB. 12re11	99,5000	0,0077	99,5000	99,5000	99,5000	99,5000	99,5000	99,5000	99,5000	99,5000	99,5000	99,5000
LAB. 36yh12	95,2000	4,3077	98,9516	98,9733	98,9852	98,9917	98,9953	98,9972	98,9982	98,9988	98,9991	98,9992
LAB. 1080a1	99,8333	0,3256	99,8333	99,8333	99,8333	99,8333	99,8333	99,8333	99,8333	99,8333	99,8333	99,8333
LAB. 1250e5	99,5055	0,0022	99,5055	99,5055	99,5055	99,5055	99,5055	99,5055	99,5055	99,5055	99,5055	99,5055
LAB. 1282b2	101,5100	2,0023	100,0639	100,0639	100,0639	100,0639	100,0639	100,0639	100,0639	100,0639	100,0639	100,0639
LAB. 2168f6	99,9067	0,3989	99,9067	99,9067	99,9067	99,9067	99,9067	99,9067	99,9067	99,9067	99,9067	99,9067
LAB. 3098g7	99,3333	0,1744	99,3333	99,3333	99,3333	99,3333	99,3333	99,3333	99,3333	99,3333	99,3333	99,3333
LAB. 3268i9	99,5100	0,0023	99,5100	99,5100	99,5100	99,5100	99,5100	99,5100	99,5100	99,5100	99,5100	99,5100
LAB. 3315h8	98,8667	0,6411	98,9516	98,9733	98,9852	98,9917	98,9953	98,9972	98,9982	98,9988	98,9991	98,9992
LAB. 6320c3	98,8467	0,6611	98,9516	98,9733	98,9852	98,9917	98,9953	98,9972	98,9982	98,9988	98,9991	98,9992
LAB. 8743d4	99,6667	0,1589	99,6667	99,6667	99,6667	99,6667	99,6667	99,6667	99,6667	99,6667	99,6667	99,6667
Χ*	99,5078	0,2500	99,5755	99,5783	99,5797	99,5806	99,5810	99,5812	99,5814	99,5814	99,5815	99,5815
Desvío Estándar	1,7918	1,5280	0,3540	0,3486	0,3457	0,3441	0,3432	0,3428	0,3425	0,3424	0,3423	0,3423
S*	0,3708		0,4015	0,3953	0,3920	0,3902	0,3892	0,3887	0,3884	0,3883	0,3882	0,3881
d	0,5561		0,6022	0,5930	0,5880	0,5853	0,5838	0,5830	0,5826	0,5824	0,5823	0,5822
x - d	98,9516		98,9733	98,9852	98,9917	98,9953	98,9972	98,9982	98,9988	98,9991	98,9992	98,9993
x + d	100,0639		100,1778	100,1713	100,1677	100,1658	100,1648	100,1643	100,1640	100,1638	100,1637	100,1637

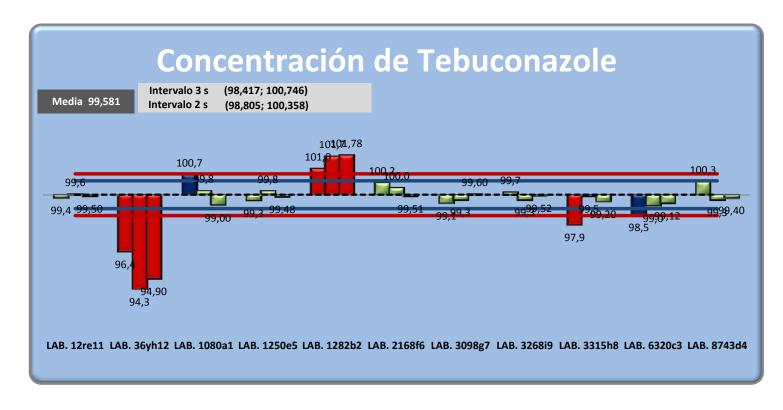
Luego de la primera iteración se observa que los valores extremos se transforman en los límites x - δ y x+ δ correspondiente a cada iteración, así se llega a una estimación robusta de los estadísticos que luego serán utilizados en los intervalos de confianza y los cálculos de los z-score.

Intervalos de confianza



Laboratorios Cuestionables (98,805; 100,358) = Ninguno. Laboratorios Insatisfactorios (98,417; 100,746) = Laboratorio 36yh12 y 1282b2.

Z-Score



Laboratorios Cuestionables $\pm 2\sigma$ = Ninguno.Laboratorios Insatisfactorios $\pm 3\sigma$ = Laboratorio 36yh12 y 1282b2.

Intervalos de confianza (3 mediciones)

Laboratorios Cuestionables (98,805; 100,358) = Ninguno.
Laboratorios Insatisfactorios (98,417; 100,746) = Laboratorios 36yh12 y 1282b2